Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Virol ; 95(1): e28383, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2148398

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 µM to Remdesivir 0.57 µM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.


Asunto(s)
COVID-19 , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Interacciones Huésped-Patógeno , Humanos , COVID-19/metabolismo , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteína de Unión a CREB/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1934133

RESUMEN

Casein kinase 2 (CK2) is a ubiquitously expressed serine/threonine kinase and is upregulated in human obesity. CX-4945 (Silmitasertib) is a CK2 inhibitor with anti-cancerous and anti-adipogenic activities. However, the anti-adipogenic and pro-lipolytic effects and the mode of action of CX-4945 in (pre)adipocytes remain elusive. Here, we explored the effects of CX-4945 on adipogenesis and lipolysis in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte cell line. CX-4945 at 15 µM strongly reduced lipid droplet (LD) accumulation and triglyceride (TG) content in differentiating 3T3-L1 cells, indicating the drug's anti-adipogenic effect. Mechanistically, CX-4945 reduced the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and perilipin A in differentiating 3T3-L1 cells. Strikingly, CX-4945 further increased the phosphorylation levels of cAMP-activated protein kinase (AMPK) and liver kinase B-1 (LKB-1) while decreasing the intracellular ATP content in differentiating 3T3-L1 cells. In differentiated 3T3-L1 cells, CX-4945 had abilities to stimulate glycerol release and elevate the phosphorylation levels of hormone-sensitive lipase (HSL), pointing to the drug's pro-lipolytic effect. In addition, CX-4945 induced the activation of extracellular signal-regulated kinase-1/2 (ERK-1/2), and PD98059, an inhibitor of ERK-1/2, attenuated the CX4945-induced glycerol release and HSL phosphorylation in differentiated 3T3-L1 cells, indicating the drug's ERK-1/2-dependent lipolysis. In summary, this investigation shows that CX-4945 has strong anti-adipogenic and pro-lipolytic effects on differentiating and differentiated 3T3-L1 cells, mediated by control of the expression and phosphorylation levels of CK2, C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, AMPK, LKB-1, ERK-1/2, and HSL.


Asunto(s)
Adipogénesis , Quinasa de la Caseína II , Naftiridinas , Fenazinas , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Diferenciación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glicerol/farmacología , Humanos , Lipólisis/efectos de los fármacos , Ratones , Naftiridinas/farmacología , PPAR gamma/metabolismo , Perilipina-1/metabolismo , Fenazinas/farmacología , Esterol Esterasa/metabolismo
3.
Nat Metab ; 4(1): 29-43, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1612214

RESUMEN

Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.


Asunto(s)
COVID-19/complicaciones , COVID-19/virología , Glucosa/metabolismo , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Proteínas de la Membrana/metabolismo , SARS-CoV-2 , Animales , Biomarcadores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ayuno , Expresión Génica , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Interacciones Huésped-Patógeno , Humanos , Hiperglucemia/sangre , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/sangre , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Especificidad de Órganos/genética
4.
J Immunol ; 207(7): 1776-1784, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1497460

RESUMEN

Acquired neutrophil dysfunction frequently develops during critical illness, independently increasing the risk for intensive care unit-acquired infection. PI3Kδ is implicated in driving neutrophil dysfunction and can potentially be targeted pharmacologically. The aims of this study were to determine whether PI3Kδ inhibition reverses dysfunction in neutrophils from critically ill patients and to describe potential mechanisms. Neutrophils were isolated from blood taken from critically ill patients requiring intubation and mechanical ventilation, renal support, or blood pressure support. In separate validation experiments, neutrophil dysfunction was induced pharmacologically in neutrophils from healthy volunteers. Phagocytosis and bacterial killing assays were performed, and activity of RhoA and protein kinase A (PKA) was assessed. Inhibitors of PI3Kδ, 3-phosphoinositide-dependent protein kinase-1 (PDK1), and PKA were used to determine mechanisms of neutrophil dysfunction. Sixty-six patients were recruited. In the 27 patients (40.9%) with impaired neutrophil function, PI3Kδ inhibition consistently improved function and significantly increased bacterial killing. These findings were validated in neutrophils from healthy volunteers with salbutamol-induced dysfunction and extended to demonstrate that PI3Kδ inhibition restored killing of clinical isolates of nine pathogens commonly associated with intensive care unit-acquired infection. PI3Kδ activation was associated with PDK1 activation, which in turn phosphorylated PKA, which drove phosphorylation and inhibition of the key regulator of neutrophil phagocytosis, RhoA. These data indicate that, in a significant proportion of critically ill patients, PI3Kδ inhibition can improve neutrophil function through PDK1- and PKA-dependent processes, suggesting that therapeutic use of PI3Kδ inhibitors warrants investigation in this setting.


Asunto(s)
COVID-19/inmunología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Enfermedad Crítica , Neutrófilos/inmunología , Neumonía/inmunología , SARS-CoV-2/fisiología , Sepsis/inmunología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Carga Bacteriana , Bacteriólisis , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fagocitosis , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Insuficiencia Respiratoria , Riesgo
5.
Viruses ; 13(6)2021 06 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1287275

RESUMEN

The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC-EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies.


Asunto(s)
Adenoviridae/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Metapneumovirus/fisiología , Virus Sincitial Respiratorio Humano/fisiología , Replicación Viral , Células A549 , Línea Celular , Quimiocinas/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Células HEK293 , Humanos , Quinolinas/farmacología
6.
J Mol Biol ; 433(8): 166875, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1108437

RESUMEN

The coronavirus nucleocapsid protein (N) controls viral genome packaging and contains numerous phosphorylation sites located within unstructured regions. Binding of phosphorylated SARS-CoV N to the host 14-3-3 protein in the cytoplasm was reported to regulate nucleocytoplasmic N shuttling. All seven isoforms of the human 14-3-3 are abundantly present in tissues vulnerable to SARS-CoV-2, where N can constitute up to ~1% of expressed proteins during infection. Although the association between 14-3-3 and SARS-CoV-2 N proteins can represent one of the key host-pathogen interactions, its molecular mechanism and the specific critical phosphosites are unknown. Here, we show that phosphorylated SARS-CoV-2 N protein (pN) dimers, reconstituted via bacterial co-expression with protein kinase A, directly associate, in a phosphorylation-dependent manner, with the dimeric 14-3-3 protein, but not with its monomeric mutant. We demonstrate that pN is recognized by all seven human 14-3-3 isoforms with various efficiencies and deduce the apparent KD to selected isoforms, showing that these are in a low micromolar range. Serial truncations pinpointed a critical phosphorylation site to Ser197, which is conserved among related zoonotic coronaviruses and located within the functionally important, SR-rich region of N. The relatively tight 14-3-3/pN association could regulate nucleocytoplasmic shuttling and other functions of N via occlusion of the SR-rich region, and could also hijack cellular pathways by 14-3-3 sequestration. As such, the assembly may represent a valuable target for therapeutic intervention.


Asunto(s)
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas de la Nucleocápside de Coronavirus/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Escherichia coli , Humanos , Mutación , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , ARN Viral/metabolismo , Especificidad por Sustrato
7.
Cells ; 9(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: covidwho-730305

RESUMEN

An outbreak of the novel coronavirus (CoV) SARS-CoV-2, the causative agent of COVID-19 respiratory disease, infected millions of people since the end of 2019, led to high-level morbidity and mortality and caused worldwide social and economic disruption. There are currently no antiviral drugs available with proven efficacy or vaccines for its prevention. An understanding of the underlying cellular mechanisms involved in virus replication is essential for repurposing the existing drugs and/or the discovery of new ones. Endocytosis is the important mechanism of entry of CoVs into host cells. Endosomal maturation followed by the fusion with lysosomes are crucial events in endocytosis. Late endosomes and lysosomes are characterized by their acidic pH, which is generated by a proton transporter V-ATPase and required for virus entry via endocytic pathway. The cytoplasmic cAMP pool produced by soluble adenylyl cyclase (sAC) promotes V-ATPase recruitment to endosomes/lysosomes and thus their acidification. In this review, we discuss targeting the sAC-specific cAMP pool as a potential strategy to impair the endocytic entry of the SARS-CoV-2 into the host cell. Furthermore, we consider the potential impact of sAC inhibition on CoV-induced disease via modulation of autophagy and apoptosis.


Asunto(s)
Inhibidores de Adenilato Ciclasa/uso terapéutico , Adenilil Ciclasas/metabolismo , Betacoronavirus/fisiología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , AMP Cíclico/antagonistas & inhibidores , Pandemias/prevención & control , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/prevención & control , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Neumonía Viral/metabolismo , Neumonía Viral/virología , SARS-CoV-2 , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA